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Introduction to LLMs

* If we have attention, do we even need recurrent
connections?

* Can we transform our RNN into a purely
attention-based model?

* Attention can access all time steps
simultaneously, potentially doing everything that
recurrence can, and even more. However, this
approach presents some challenges:

The encoder lacks temporal dependencies at all!
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Self-Attention

this is not a recurrent model!
but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs * _| Tanmoy Chakraborty



Self-Attention

e 2 U3 this is not a recurrent model!
/ / / but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs * _| Tanmoy Chakraborty



Self-Attention

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy

e 2 U3 this is not a recurrent model!
/ / / but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy

", ..
/—3 this is not a recurrent model!

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention

ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
ki = k(hy) (just like before) — e.g., kt = Wihy

", ..
/—3 this is not a recurrent model!

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention

ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
ki = k(hy) (just like before) — e.g., kt = Wihy
]{1 Qﬂ& kQ QQE ]C3 QSE
AL \t/ Nt/ but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention

ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
ki = k(hy) (just like before) — e.g., kt = Wihy
g = q(ht) e.g., gt = Wyhy

kp @ e ka 42 2 ks 43 v this is not a recurrent model!

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention

€ € €
.- .- 1 ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
IW\L ki = k(hy) (just like before)  e.g., ky = Wihy
g = q(ht) e.g., gt = Wyhy
kl qi ﬂ kQ g2 2 ]C3 g3 ﬂ

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention

€1,1 €1, €1,3 e = f
’ ’ ’ ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
IW\L ki = k(hy) (just like before) — e.g., kt = Wihy
¢ = q(hy) e.g., g = Wohy
kl qi ﬂ kQ g2 2 ]C3 g3 ﬂ

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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self-attention “layer”

ttt tttr 1t




Self-Attention
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self-attention “layer”
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Self-Attention
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From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called Transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?
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Positional Encoding - Motivation

* Problem : Self-attention processes all the elements of a sequence in parallel without
any regard for their order.

/x
* Example : the sunrises inthe east Bag of Words

* Permuted version : rises in the sun the east . .
in, the, rises, east,

the eastrises in the sun

* Self-attention is permutation invariant.

* In natural language, it is important to take into account the order of words in a sentence.

* Solution : Explicitly add positional information to indicate where a word appears in a
sequence
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Sinusoidal Positional Encoding

* Helps it determine the position of each word (absolute positional information), or the
distance between different words in the sequence(relative positional information)

* The frequency decreases along the encoding dimension.
PE(pos,2i) = sin(pos/10000%"/ 4
PE(pos 2i+1) = cos(pos/10000%/ i)

LI P P A R
- R

Will be discussed in
the next module!

e

I
IS

Encoding
Dimension

Position
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Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

hq ho hs
1 1 f
I Lo I3
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Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

/ \ lzal\

ki1 @1 ’01 Uz 3
Nt/ \ T / '\ T / Due to the softmax function, this will be heavily
influenced by a single value.
hq ho hs
t t f
I Lo I3
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Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

a2
a; = Zal,t’vt
t
1 /fg q2

ki 41|U V2 k3 Q43 U3
Nt/ Nt/ Nt/ Due to the softmax function, this will be heavily
influenced by a single value.
hi hs h et = qr- ke
t t f
L1 L3 L3

It's challenging to clearly specify that you want two distinct
elements, like the subject and object in a sentence.
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Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step
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Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

ki1 91,1011 ko G2,1 V21 ksa §3,1 V3.1

"t/ At/ ANt/

h ho hs
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Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

(13 3 . .
full attention vector formed by concatenation:
az1
a2 = | a2
az,3

compute weights independently for each head

erti =qri- K

/_\“_
ki1 91,1011 ko G2,1 V21 ksa §3,1 V3.1

Nt/ ANt/ ANt/ B
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Self-Attention (In Encoder)

Q 0000) {0000
K 0000){ 0000
V 0000)|f A{0000)

Layerp (OOOQ) (0000} (O000)

Nobel committee awards Strickland who advanced optics

(O000) (0000 (©000)

Slides by Emma Strubell

Introduction to LLMs _| Tanmoy Chakraborty



Self-Attention (In Encoder)

i
)
@)
o
0000
0000

Q
K
V
Layerp (©COQOQ) OOOO (OOOO' (0000 (0000 (0000

Nobel commlttee awards Strlckland who advanced optics Slides by Emma Strubell

Introduction to LLMs \ _| Tanmoy Chakraborty



Self-Attention (In Encoder)
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Multi-Head Self-Attention
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Multi-Head Self-Attention
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From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?
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Self-Attention Is “Linear”

a
! ki = Wihy qt — tht vy = Wy hy

T
‘ 
@‘:O\@ O Q)¢ = eXp(el,t)/ ZeXp(el,t’)

/ A A /A t,
‘ -a1 &3 el = qr- ke
| meew |
| softmax |
€1,1 €1,2 €1.3 a; — Zal,tvt — Zal,thht = W, Z Oél,tht
linear transformation non-linear weights
ki 41 v1 ko Q2 U2 ks q3 V3
Nt/ Nt/ Nt/

Problem: Every self-attention layeris a
5 5 h linear transformation of the previous layer
! 2 3 with non-linear weights.
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Position-wise Feed-Forward Networks

self-attention “layer”

t 1t 1 tt t t 1t
k1 quw ko QQM ks q;; e Solution : Make the model more expressive is by

\ Tz / T2 / \ T2 / alternating use of self-attention and non-linearity.
h h3 h3
Tl 1 $ * Non-linearity is incorporated by means of a feed-
aq as a3 forward network which consists of two linear
t t f transformations with a ReLU activation in between.

self-attention “layer”

£t £+ttt FFN(LB) — IIlELX(O, xW1 + bl)WQ + bo
By o ke o2  The same non-linearity is utilized across various
Nt/ Nt/ » .
1 1 positions but they differ from layer to layer.
1 2
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From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty



Self-attention can see the future!

Y2 U3 U4
t t Tg A crude self-attention “language model”:
2 2
hi h5 hs
f ! ! In practice, there would be several
a 2 as alternating self-attention layers and

$ $ t position-wise feedforward networks

self-attention “layer”

ttt tttttt

kl 91w ]fg Q2w k‘3 QSE

Nt/ Nt/ Nt/

ha hs h3
t t t
Y1 Y2 Y3
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Self-attention can see the future!

Y2 \ U3 \ U4
t t t A crude self-attention “language model”:
hi hs \ h
f “‘ ! “‘ ! In practice, there would be several
a \‘ 2 \‘ as alternating self-attention layers and
\ \ position-wise feedforward networks

Big problem: self-attention at step 1 can look at the value
at steps 2 & 3, which is based on the inputs at steps 2 & 3

Xt/ Xt/ "‘\ t At test time (when decoding), the inputs at steps 2 & 3 will
\ \ be based on the output at step 1...

hl \ hl \ hl

1 v\ 169 3

t \ 1 \1 ...which requires knowing the input at steps 2 & 3
| |

Y1 Y2 Y3
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Masked Attention

A crude self-attention “language model”:

Y2 U3 (N
t\ t\ t
h? \ h3 \ h3
t \‘ t \‘ t
ai ‘\‘ aa ‘\‘ as
$ \ t \ 4

s -attention  layer”

Introduction to LLMs

At test time (when decoding), the inputs at steps 2 & 3 will
be based on the output at step 1...

...which requires knowing the input at steps 2 & 3

Must allow self-attention into the past...
...but not into the future

Easy solution:

€t - ky

. 1 >
el’t:{(ﬂ kt lfl_t

—00 otherwise

in practice:
just replace exp(e; ) with 0 if [ < ¢

inside the softmax
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Transformer
Architecture
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Source of Image : Attention is all you need
(Vaswanital., 2017)
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Transformer
Architecture

Position embeddings are addedto
each word embedding. Otherwise,
since we have no recurrence, our
model is unaware of the position of a
word in the sequence!

Introduction to LLMs

Qutput

Probabilities
| Softmax )
|
|l Linear )
r ™
| Add & Norm ==
Feed
Forward
-—
s I N | Add & Norm J=—
—{_Add & Norm J S ii-Head
Feed Attention
Forward T 7 7 Nx
j ( J
Add & Norm
Nx I
~—| Add & Norm ] Masked
Multi-Head Multi-Head
Attention Attention
At At
— I
\ . J
Positional Positional
. + + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)
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Transformer
Architecture

Residual connections, which mean
that we add the input to a particular
block to its output, help improve
gradient flow
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Qutput

Probabilities
| Softmax )
1
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Forward
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Transformer
Architecture

A feed-forward layer on top of the
attention- weighted averaged value
vectors allows us to add more
parameters / nonlinearity

Qutput
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Qutput

Tl’a N SfO Fmer ProbaTbilities

. [ Softmax |
Architecture i
|l Linear )
& ™
| Add & Norm ==
Feed
Forward
-
s I N | Add & Norm J=—
> Add & Norm ) Multi-Head
Feed Attention
Forward N
We stack as many of these , 2 }F J )
) S——
Transformerblocks on top of each [(Add & Norm Je=
. —> Nx | __("Add & Norm ) .
other as we can (bigger models are - Masked
) | Multi-Head Multi-Head
generally better given enough data!) HEHan Attention
At At
k_ Y, . )
Positional o N Positional
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)
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Transformer
Architecture
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Qutput
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| Softmax )
|
|  Linear |
r ™
| Add & Norm ==
Feed
Forward
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s I N | Add & Norm J=—
—{_Add & Norm J S ii-Head
Feed Attention
Forward T 7 7 Nx
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Add & Norm
Nx I
~»| Add & Norm ] Masked
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\ . J
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Encoding (4)_® Encoding
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Moving onto the decoder, which takes
in English sequences that have been
shifted to the right (e.g., <START>
schools opened thein
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Transformer
Architecture
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Qutput

Probabilities
| Softmax )
1
|  Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
j | J—
Add & Norm
Nx I
~—| Add & Norm | Masked
Multi-Head Multi-Head |,
Attention Attention
At At
— ] e/
\, \. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
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Embedding Embedding
Inputs Qutputs

(shifted right)

We first have an instance of masked
self attention. Since the decoder is
responsible for predicting the English
words, we need to apply masking as
we saw before.
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Qutput
Probabilities

Transformer
. [ Softmax |
Architecture ——

Linear

& ™
| Add & Norm Je—
Feed
Now, we have cross attention, which i
—
connects the decoder to the encoder { \ ] (Add & Norm
by enablingitto attend over the S ) Muti-Head
o . Feed Attention
encoder’s final hidden states. Eorward 5 Nix
j ( Je~
Add & Norm
Nx I
~>| Add & Norm ) Maskod
Multi-Head Multi-Head
Attention Attention
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— \ —
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(Vaswani et al., 2017)
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Transformer
Architecture
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Qutput

Probabilities
| Softmax ) —
1
|  Linear |
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| Add & Norm =
Feed
Forward
| I
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> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
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Nx I
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After stacking a bunch of these
decoder blocks, we finally have our
familiar softmax layer to predict the
next English word.
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Qutput

Tra N SfO rmer ProbaTDilities

Reduces covariance shift and
makes the system stable

. | Softmax )
Architecture T
|l Linear )
& ™
| Add & Norm ==
Feed
Forward
—
s I N | Add & Norm =<
—{_Add & Norm J ~it-Head
: 1 -re Feed Attention
Adding non-linearities Eorward 5 Nix
j ( J~
Add & Norm
Nx I
; : ~—>| Add & Norm ] Maskod
Allows querying multiple Multi-Head Muiti-Head
positions at each layer AL Attention
At LU
— J/ . p—
. . . Positional Positional
Adds positional information ——Encoding ®—(J{> (?—@ Encoding
Input Output
Embedding Embedding
Inputs Qutputs
Source of Image : Attention is all you need (Vaswani etal., 2017) (shifted right)
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Layer normalization

* Mainidea: Batch normalization is quite beneficial, but it's challenging to apply with
sequence models. The varying lengths of sequences make it difficult to normalize across

a batch. Sequences can be very long, which often results in smaller batch sizes.

* Solution: Layer normalization

d-dimensional vectors
5 +— for each sample in batch different dimensions of a

Jdi ar,ag,...,a
N1 1 1 ./ | &
M:EZ% o= EZ(G@_U)Q M:gzaj 0= 32(%“#)2
P i—=1 /' i=1 i=1
1-dim
a— [

_I_
v Layer Norm

s —
a; =~ —Fy 48 a
o Batch Norm
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