Introduction to Transformer
(Part |)

Tanmoy Chakraborty
Associate Professor, lIT Delhi
https://tanmoychak.com/

https://tanmoychak.com/

|s Attention All We Need?

Recap: Attention

ook b o o
Pt

-
r 1ttt t t 1

i1 Ti2 L33 Yi,0 Yi,1l Yi2 Yi3
mignon chiot Un <START> A cute puppy

Introduction to LLMs

Tanmoy Chakraborty

Recap: Attention

L lz a3 Ui 3

softmax |

Ti1 Li2 T3 Yi,0 Yi1l Yi,2 Yi3
mignon chiot Un <START> A cute puppy

Introduction to LLMs

Tanmoy Chakraborty

Recap: Attention

L (IZ a3 Ui 3

softmax |

Ti1 Li2 T3 Yi,0 Yi1l Yi,2 Yi3
mignon chiot Un <START> A cute puppy

Introduction to LLMs

* If we have attention, do we even need recurrent
connections?

* Can we transform our RNN into a purely
attention-based model?

* Attention can access all time steps
simultaneously, potentially doing everything that
recurrence can, and even more. However, this
approach presents some challenges:

The encoder lacks temporal dependencies at all!

Tanmoy Chakraborty

Self-Attention

this is not a recurrent model!
but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs * _| Tanmoy Chakraborty

Self-Attention

e 2 U3 this is not a recurrent model!
/ / / but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs * _| Tanmoy Chakraborty

Self-Attention

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy

e 2 U3 this is not a recurrent model!
/ / / but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy

", ..
/—3 this is not a recurrent model!

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
ki = k(hy) (just like before) — e.g., kt = Wihy

", ..
/—3 this is not a recurrent model!

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
ki = k(hy) (just like before) — e.g., kt = Wihy
]{1 Qﬂ& kQ QQE]C3 QSE
AL \t/ Nt/ but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
ki = k(hy) (just like before) — e.g., kt = Wihy
g = q(ht) e.g., gt = Wyhy

kp @ e ka 42 2 ks 43 v this is not a recurrent model!

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

€ € €
.- .- 1 ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
IW\L ki = k(hy) (just like before) e.g., ky = Wihy
g = q(ht) e.g., gt = Wyhy
kl qi ﬂ kQ g2 2]C3 g3 ﬂ

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

€1,1 €1, €1,3 e = f
’ ’ ’ ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
IW\L ki = k(hy) (just like before) — e.g., kt = Wihy
¢ = q(hy) e.g., g = Wohy
kl qi ﬂ kQ g2 2]C3 g3 ﬂ

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

F
=

| softmax | el =q - k
€1,1 €1,2 €1.3

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy
IW\L ki = k(hy) (just like before) — e.g., kt = Wihy
gt = q(ht) e.g., ¢ = Wyhy
]{1 g1 U1 kQ G2 U2]C3 43 U3
|| ||]

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

I_& . 2_, oy = exp(et)/ Zexp(el,t’)

tl
| €t —4q1- ki

| softmax
€1,1 €1,2 €1.3

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy
IW\L ki = k(hy) (just like before) e.g., ky = Wihy

gt = q(ht) e.g., ¢ = Wyhy
kl Qﬂ& kQ QQﬂ]C3 QSE

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

I_& . 2_, oy = exp(et)/ Zexp(el,t’)

tl
| €t —4q1- ki

| softmax
€1,1 €1,2 €1.3

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy
IW\L ki = k(hy) (just like before) e.g., ky = Wihy

gt = q(ht) e.g., ¢ = Wyhy
kl Qﬂ& kQ QQﬂ]C3 QSE

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

C———,

/ A A /n
oq Q3 o]+ = exple expl(e; ¢
L- . R Lt p(l,t)/; p(er)
| softmax | el = qr - ky
e e e ’
1,1 1,2 1,3 vy = v(ht) before just had v(h;) = hy, now e.g. v(hy) = Wyhy
I [\%% \L ki = k(hy) (just like before) .8, ke = Wihy
qt = Q(ht) e.g., ¢ = Wyhy
kp @ ﬂ ka 92 ﬂ ks 43 |Us this is not a recurrent model!
Nt/ N\t / Nt/

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

<
@':@\ O a; = Zal,t’Ut

/ A A /“ ¢
oq Q3 o]+ = exple expl(e; ¢
L- . R Lt p(l,t)/; p(er)
| softmax | el = qr - ky
e e e ’
1,1 1,2 1,3 vy = v(ht) before just had v(h;) = hy, now e.g. v(hy) = Wyhy
I [\%% \L ki = k(hy) (just like before) .8, ke = Wihy
qt = Q(ht) e.g., ¢ = Wyhy
kp @ ﬂ ka 92 ﬂ ks 43 |Us this is not a recurrent model!
Nt/ N\t / Nt/

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs \ _| Tanmoy Chakraborty

Self-Attention

/ A A /“ t
o . &3 o+ = exple exp(e;
L- s | Lt p(lat)/tZ p(ert)
| softmax | s =qp- kt
6 6 6 ’
” 4 - vy = v(ht) before just had v(h;) = hy, now e.g. v(hy) = Wyhy
I[\%%N kt — k(ht) (jUSt like before) €.g., kt = tht

qr = Q(ht) €.g., 4t = tht
this is not a recurrent model!

ky 1|01 kg 2(U3 ks 03|03
Nt/ \t7/ but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs \ _| Tanmoy Chakraborty

Self-Attention

/1 f /

‘ Qo ' 3
s
| softmax |
€1.1 €1.2 €1,3

ky @101 ks 4202 ks a3 v
Nt/ \t/ Nt/
h hs hs
ha ho hs
t t f t t t

Introduction to LLMs *) o Tanmoy Chakraborty

Self-Attention

/1 f /
L | M| o

i

| softmax |

€1,1 €1,2 €1.3

1 g1 ko QQM ks (IS
\T/ \T/ \T/ kl Q1M k2q2w k3q3

hy By ha N\t / Nt/ Nt/
hl h2 h3
t t t t t t

Introduction to LLMs * / o Tanmoy Chakraborty

Self-Attention

ai

T

@N

/1 t /@
L | M| o
i
| softmax |
€1,1 €1,2 €1.3

Introduction to LLMs

self-attention “layer”

ttt tttr 1t

Self-Attention

ai

T

<
@";Q\ O
‘ 831 ' Q3 k1 91w ko Q2w ks QSE

— \t/ Nt/ Nt/

| softmax |

€1.1 €1,2 €1,3 j> a1 ao a3
self-attention “layer”

LI

Introduction to LLMs

Self-Attention

ai
T
Cs———
¥ ¥ 1 R A A A
/ /
L& ' 3]€1 Q1H k‘g QQH k'3 qs3
| softmax _>| \ T / \ T / \ T
€1,1 €1.2 €1.3 ai as as
N T ! !]

t 1 Pt

Introduction to LLMs

Self-Attention

aq .
4 .
Cs———
¥ ¥ 1 R A A A
/ /
L& ' 3]€1 Q1H k‘g QQH k'3 qs3
| softmax _>| \ T / \ T / \ T
€1,1 €1.2 €1.3 ai as as
N T ! !]

t 1 Pt

Introduction to LLMs

A
Self-Attention Keep repeating

aq .
4 .
Cs———
¥ ¥ 1 R A A A
/ /
L& ' 3]€1 Q1H k‘g QQH k'3 qs3
| softmax _>| \ T / \ T / \ T
€1,1 €1.2 €1.3 ai as as
N T ! !]

t 1 Pt

Introduction to LLMs

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called Transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called Transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

Positional Encoding - Motivation

* Problem : Self-attention processes all the elements of a sequence in parallel without
any regard for their order.

/x
* Example : the sunrises inthe east Bag of Words

* Permuted version : rises in the sun the east . .
in, the, rises, east,

the eastrises in the sun

* Self-attention is permutation invariant.

* In natural language, it is important to take into account the order of words in a sentence.

* Solution : Explicitly add positional information to indicate where a word appears in a
sequence

Introduction to LLMs \ _| Tanmoy Chakraborty

Sinusoidal Positional Encoding

* Helps it determine the position of each word (absolute positional information), or the
distance between different words in the sequence(relative positional information)

* The frequency decreases along the encoding dimension.
PE(pos,2i) = sin(pos/10000%"/ 4
PE(pos 2i+1) = cos(pos/10000%/ i)

LI P P A R
- R

Will be discussed in
the next module!

e

I
IS

Encoding
Dimension

Position

Introduction to LLMs w o Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

hq ho hs
1 1 f
I Lo I3

Introduction to LLMs _| Tanmoy Chakraborty

Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

ki o1 kg 92 U3 ks a3|vs
/

\t Nt/ Nt/
hq ho hs
1 1 f
I Lo I3

Introduction to LLMs * _| Tanmoy Chakraborty

Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

/ \ lzal\

ki1 @1 ’01 Uz 3
Nt/ \ T / '\ T / Due to the softmax function, this will be heavily
influenced by a single value.
hq ho hs
t t f
I Lo I3

Introduction to LLMs \ _| Tanmoy Chakraborty

Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

a2
a; = Zal,t’vt
t
1 /fg q2

ki 41|U V2 k3 Q43 U3
Nt/ Nt/ Nt/ Due to the softmax function, this will be heavily
influenced by a single value.
hi hs h et = qr- ke
t t f
L1 L3 L3

It's challenging to clearly specify that you want two distinct
elements, like the subject and object in a sentence.

Introduction to LLMs Gk LCS: Tanmoy Chakraborty

Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

Introduction to LLMs * _| Tanmoy Chakraborty

Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

ki1 91,1011 ko G2,1 V21 ksa §3,1 V3.1

"t/ At/ ANt/

h ho hs

Introduction to LLMs I _| Tanmoy Chakraborty

Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

(13 3 . .
full attention vector formed by concatenation:
az1
a2 = | a2
az,3

compute weights independently for each head

erti =qri- K

/_\“_
ki1 91,1011 ko G2,1 V21 ksa §3,1 V3.1

Nt/ ANt/ ANt/ B

Introduction to LLMs \ L | Tanmoy Chakraborty

Self-Attention (In Encoder)

Q 0000) {0000
K 0000){ 0000
V 0000)|f A{0000)

Layerp (OOOQ) (0000} (O000)

Nobel committee awards Strickland who advanced optics

(O000) (0000 (©000)

Slides by Emma Strubell

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention (In Encoder)

i
)
@)
o
0000
0000

Q
K
V
Layerp (©COQOQ) OOOO (OOOO' (0000 (0000 (0000

Nobel commlttee awards Strlckland who advanced optics Slides by Emma Strubell

Introduction to LLMs \ _| Tanmoy Chakraborty

Self-Attention (In Encoder)

optics 8 6 8 8 8 8 8
= aff BB B B OB B
Strickland O Q@ @) @) @) Q@ @)

awards @) @) @) @) O Q@ @)
committee @) @) @) @) @) @) @)

s g © © ¢ g @ e

Q 0000) 0000
K OQ000) O000)
V 0000) O000)

Layerp (OOOQ) (0000 (0000 (O000) (0000 (0000
Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell

Introduction to LLMs : Ii5 Tanmoy Chakraborty

Self-Attention (In Encoder)

optics (@ O] 6) 0 ()) @
advanced |O O @) O O O @)
who |O Q@ @) @) @) @) @)
Strickland |O Q@ @) @) @) Q@ @)
awards |O O @) @) @) Q@ @)
committee |O @) @) @) @) @) @)
i1t/ I </ A ' I N </ N </ N |
Q 0000) {0000
K OQ000) O000)
V 0Q000) O000)

Layerp (OO0OQO) (O0O0Q0) (0000 (O000) (0000 (0000
Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell

Introduction to LLMs : Ii5 Tanmoy Chakraborty

Self-Attention (In Encoder)

a8 B B B @ B
advance

who O§Q o) o) o) o) o)

Strickland |O O\O @) @) Q@ @)

A — Tt - < N I

A "Nobel (O S 10 ® o o ©
Q OSQO) ARQOO0 QOO0 ¥ {(OO0Q0) 0000
K ooo L@' £ Q00D f‘; 720000
v 0000 ﬁgooo f 0000 ’oooo ooo

Layerp (0CO00) (0000 (0000 (0000 (0000 (000 ([©000)

Nobel committee awards Strickland who advanced optics Slides by Emma Strubell

Introduction to LLMs * , _| Tanmoy Chakraborty

Self-Attention (In Encoder)

optics (@ 0 0 O) 0 Q) @)
advanced |O O O O O O O
who |O Q@ @) O O @) @)
Strickland |O Q@ @) O @) Q@ O
awards |O @) @) @) O Q@ O
committee |O @) @) O O @) @)
e 8 8 e g o B

Q
K
V
Layerp (OCO0OQ) (©CO0Q) (OOOQ0) (©O00Q0) (000Q) (COO0)

1 1
Nobel committee awards Strickland who advanced optics Slides by Emma Strubell

Introduction to LLMs : Ii5 Tanmoy Chakraborty

Self-Attention (In Encoder)

— PR) — —) —
optics |© @) @) @) @) @) Q@
advanced |O O O O O O O
who |O Q@ @) @) O O @)
Strickland |O Q@ @) @) @) Q@ @)
awards |O O @) @) @) Q@ @)
committee |O @) @) O @) @) @)
it/ A) R </ RN /N </ N </ N <
Q 0000) {0000
K 0000) O000)
V 0000) O000)
Layerp (OOQQO) OOOO OOOO (O0O00) (0O0O0) (OOOO0)

Nobel commlttee awards Strlckland who advanced optics Slides by Emma Strubell

Introduction to LLMs Tanmoy Chakraborty

Self-Attention (In Encoder)

optics (@) 0 (e) 0 @) @)
advanced |O O O @) @) O O
who |O @ O O O @) @)
Strickland |O (] @) @) @) @ @)
awards |O @) O @) @) Q@ @)
committee |O @) @) @) @) @) @)
el 8 8 e 8 8 6

0000 (O000)

Q000 0000

(©CO00) (000Q) (0000)

Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell

Introduction to LLMs : Ii5 Tanmoy Chakraborty

Multi-Head Self-Attention

@8 <8 ~@f @8 @8 8 @8
ontics (@(3[5[0| (O18[S2] (013[S[2] 2181812 (018189 (@l8[8le| (@|S|S|@
e 2151918 (8191810 [Sisiels] s1eleisl [2(2(83] 318918 [218[5l8
wno
sriciand | O(3S(0] (@[3[S]@] [2]3[3/8] [2[SI81e] [2]8[38] @(3[S| [o3(8|e
awards |Q|5(5|9) |1916|6]Y) [Q|0]6/2) |2[0|612) |Q(o|e|Y |8|e(a|Y |][0]|6[2
committee |O| @ | Ol Ol = Ole= OloM= OloM= OlpM=
A Nobelgu \(_)Ju gu qu gu 9_1 8;}
Q OOOOHOOOOLHOOO OO OO ORI+ OO O OLHHOOOORPHOOOO
K elelele)’ 5 (elelele)’ S (elelele)’ S (elelele)” p2s(elelele)’ Hed(elelele)” Hos (elele]l®
V OO0O), OO0 AOOOO) OO0 AOOOOH OO0V, ~OO00

Layerp (OO0OQ) (©0O0Q) (OOOQ0) Q000 (©000) (CO0Q0) (0000

1
Nobel committee awards Strickland who advanced optics Slides by Emma Strubell

Introduction to LLMs LCa Tanmoy Chakraborty

Multi-Head Self-Attention

(©000) ? ﬁ }@ (0000 (0000 }@()ooo)

45@ @8 @3 ﬁfaé‘ ﬁs@ @9 3
ontics (@(3[5[0| (O18[S2] (013[S[2] 2181812 (018189 (@l8[8le| (@|S|S|@
e 2151918 (8191810 [Sisiels] s1eleisl [2(2(83] 318918 [218[5l8
wno
sriciand | O(3S(0] (@[3[S]@] [2]3[3/8] [2[SI81e] [2]8[38] @(3[S| [o3(8|e
awards |Q|5(5|9) |1916|6]Y) [Q|0]6/2) |2[0|612) |Q(o|e|Y |8|e(a|Y |][0]|6[2
committee |O| @ | Ol Ol = Ole= OloM= OloM= OlpM=
A Nobelgu \(_)Ju gu qu gu 9_1 8;}
Q OOOOHOOOOLHOOO OO OO ORI+ OO O OLHHOOOORPHOOOO
K elelele)’ 5 (elelele)’ S (elelele)’ S (elelele)” p2s(elelele)’ Hed(elelele)” Hos (elele]l®
V OO0O), OO0 AOOOO) OO0 AOOOOH OO0V, ~OO00

Layerp (CO0OQO) (©OQ0) (OOOO) OOOO (©000) (CO0Q0) (0000

Nobel committee awards Strlckland who advanced optics Slides by Emma Strubell

Introduction to LLMs LCa Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs -\ _| Tanmoy Chakraborty

Self-Attention Is “Linear”

a
! ki = Wihy qt — tht vy = Wy hy

T
‘
@‘:O\@ O Q)¢ = eXp(el,t)/ ZeXp(el,t’)

/ A A /A t,
‘ -a1 &3 el = qr- ke
| meew |
| softmax |
€1,1 €1,2 €1.3 a; — Zal,tvt — Zal,thht = W, Z Oél,tht
linear transformation non-linear weights
ki 41 v1 ko Q2 U2 ks q3 V3
Nt/ Nt/ Nt/

Problem: Every self-attention layeris a
5 5 h linear transformation of the previous layer
! 2 3 with non-linear weights.

Introduction to LLMs \ _| Tanmoy Chakraborty

Position-wise Feed-Forward Networks

self-attention “layer”

t 1t 1 tt t t 1t
k1 quw ko QQM ks q;; e Solution : Make the model more expressive is by

\ Tz / T2 / \ T2 / alternating use of self-attention and non-linearity.
h h3 h3
Tl 1 $ * Non-linearity is incorporated by means of a feed-
aq as a3 forward network which consists of two linear
t t f transformations with a ReLU activation in between.

self-attention “layer”

£t £+ttt FFN(LB) — IIlELX(O, xW1 + bl)WQ + bo
By o ke o2 The same non-linearity is utilized across various
Nt/ Nt/ » .
1 1 positions but they differ from layer to layer.
1 2

Introduction to LLMs Gk Tanmoy Chakraborty

(O000) (OO00) (0000 (OO00) (OOTOO) (OOTOOJ (OO00)
A A A A f
Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward
[
[(OO000) (O000) (OOOO0) (OO00] (OOOOJ [OOOO] (OO00)
—o () (o) H@ H’E)‘ (0] —o
P ocllBe oElel sales <eRe el <EBS el
optics (@5 |9(9| (O|0|el2| [Olelel2 olol8o] (olal®9] (e]3|80] (e|3l8|@
e 2191918 [81S1S1S] [Sisiele] [1eleisl [2(2(813] 218818 [2(9[518
wno
Strickland0880 .880 0880 0880 0880 0880 0880
awards | Q| 5[5(0) 10(0[al2) Q101619 [Q[0[el©) |Q|0|el® (9|e]a|® (9|06l
committee |O|@ =2 Ol Ol = Oou OloM= Olo= OloM=
A Nobe|8u 8;) \(_)Ju .J_J gu 9_1 8;}
Q O000 0000 O000O O000 0000 O000 0000
K 0000 O000 O000 O000 O000 O000 O000
¢V 0000 0000 O000O 0000 O000O 0000 0000
Layerp (OOOQO) (OOOQ) (OOOO) O000 (OO00O) (O000) (OO00)
+1 1 I- 1] 1 1 1 1]
P Nobel committee awards Strickland who advanced optics

Introduction to LLMs

Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

Self-attention can see the future!

Y2 U3 U4
t t Tg A crude self-attention “language model”:
2 2
hi h5 hs
f ! ! In practice, there would be several
a 2 as alternating self-attention layers and

$ $ t position-wise feedforward networks

self-attention “layer”

ttt tttttt

kl 91w]fg Q2w k‘3 QSE

Nt/ Nt/ Nt/

ha hs h3
t t t
Y1 Y2 Y3

Introduction to LLMs *« Tanmoy Chakraborty

Self-attention can see the future!

Y2 \ U3 \ U4
t t t A crude self-attention “language model”:
hi hs \ h
f “‘ ! “‘ ! In practice, there would be several
a \‘ 2 \‘ as alternating self-attention layers and
\ \ position-wise feedforward networks

Big problem: self-attention at step 1 can look at the value
at steps 2 & 3, which is based on the inputs at steps 2 & 3

Xt/ Xt/ "‘\ t At test time (when decoding), the inputs at steps 2 & 3 will
\ \ be based on the output at step 1...

hl \ hl \ hl

1 v\ 169 3

t \ 1 \1 ...which requires knowing the input at steps 2 & 3
| |

Y1 Y2 Y3

Introduction to LLMs _| Tanmoy Chakraborty

Masked Attention

A crude self-attention “language model”:

Y2 U3 (N
t\ t\ t
h? \ h3 \ h3
t \‘ t \‘ t
ai ‘\‘ aa ‘\‘ as
$ \ t \ 4

s -attention layer”

Introduction to LLMs

At test time (when decoding), the inputs at steps 2 & 3 will
be based on the output at step 1...

...which requires knowing the input at steps 2 & 3

Must allow self-attention into the past...
...but not into the future

Easy solution:

€t - ky

. 1 >
el’t:{(ﬂ kt lfl_t

—00 otherwise

in practice:
just replace exp(e;) with 0 if [< ¢

inside the softmax

Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Encoder

Posit
Enco

Source of Image : Attention is all you need
(Vaswanital., 2017)

Qutput
Probabilities

| Softmax)

t

|l Linear)

-

I 1\
~>| Add & Norm)

Feed
Forward

4
—

~
| Add & Norm =
Feed
Forward
| I
| Add & Norm J=—

Multi-Head
Attention

2)

~—>| Add & Norm |}

Multi-Head
Attention

t

_

.

—
L Add & Norm Je=,

Masked
Multi-Head
Attention

At

ﬁ)

Dlnal ®_(?
ling

Input
Embedding

I

Inputs

Qutput
Embedding

I

Qutputs
(shifted right)

A Positional
(4)_® Encoding

Decoder

Tanmoy Chakraborty

Transformer
Architecture

Position embeddings are addedto
each word embedding. Otherwise,
since we have no recurrence, our
model is unaware of the position of a
word in the sequence!

Introduction to LLMs

Qutput

Probabilities
| Softmax)
|
|l Linear)
r ™
| Add & Norm ==
Feed
Forward
-—
s I N | Add & Norm J=—
—{_Add & Norm J S ii-Head
Feed Attention
Forward T 7 7 Nx
j (J
Add & Norm
Nx I
~—| Add & Norm] Masked
Multi-Head Multi-Head
Attention Attention
At At
— I
\ . J
Positional Positional
. + + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Tanmoy Chakraborty

Transformer
Architecture

Residual connections, which mean
that we add the input to a particular
block to its output, help improve
gradient flow

Introduction to LLMs

Qutput

Probabilities
| Softmax)
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
— (——
L Add & Norm Je=,
~—| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
—] e/
\. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Tanmoy Chakraborty

Transformer
Architecture

A feed-forward layer on top of the
attention- weighted averaged value
vectors allows us to add more
parameters / nonlinearity

Qutput

Introduction to LLMs

Probabilities
| Softmax)
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
> Feed Attention
Forward T 7 7 Nx
j | J—
Add & Norm
Nx I
~—| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
—] e/
\, \. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Tanmoy Chakraborty

Qutput

Tl’a N SfO Fmer ProbaTbilities

. [Softmax |
Architecture i
|l Linear)
& ™
| Add & Norm ==
Feed
Forward
-
s I N | Add & Norm J=—
> Add & Norm) Multi-Head
Feed Attention
Forward N
We stack as many of these , 2 }F J)
) S——
Transformerblocks on top of each [(Add & Norm Je=
. —> Nx | __("Add & Norm) .
other as we can (bigger models are - Masked
) | Multi-Head Multi-Head
generally better given enough data!) HEHan Attention
At At
k_ Y, .)
Positional o N Positional
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Introduction to LLMs - x| Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Qutput

Probabilities
| Softmax)
|
| Linear |
r ™
| Add & Norm ==
Feed
Forward
|
s I N | Add & Norm J=—
—{_Add & Norm J S ii-Head
Feed Attention
Forward T 7 7 Nx
j (J
Add & Norm
Nx I
~»| Add & Norm] Masked
Multi-Head Multi-Head le—
Attention Attention
At At
— I
\ . J
Positional Positional
. + + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Moving onto the decoder, which takes
in English sequences that have been
shifted to the right (e.g., <START>
schools opened thein

Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Qutput

Probabilities
| Softmax)
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
j | J—
Add & Norm
Nx I
~—| Add & Norm | Masked
Multi-Head Multi-Head |,
Attention Attention
At At
—] e/
\, \. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

We first have an instance of masked
self attention. Since the decoder is
responsible for predicting the English
words, we need to apply masking as
we saw before.

Tanmoy Chakraborty

Qutput
Probabilities

Transformer
. [Softmax |
Architecture ——

Linear

& ™
| Add & Norm Je—
Feed
Now, we have cross attention, which i
—
connects the decoder to the encoder { \] (Add & Norm
by enablingitto attend over the S) Muti-Head
o . Feed Attention
encoder’s final hidden states. Eorward 5 Nix
j (Je~
Add & Norm
Nx I
~>| Add & Norm) Maskod
Multi-Head Multi-Head
Attention Attention
_t At
— \ —
Paositional Positional
. & 4+ :
Encoding ?_® Encoding
Input Output
Embedding Embedding
Source of Image : Attention is all you need Inputs Outputs

(Vaswani et al., 2017)

Introduction to LLMs

(shifted right)

Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Qutput

Probabilities
| Softmax) —
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
j | J—
Add & Norm
Nx I
~—| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
—] e/
\, \. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

After stacking a bunch of these
decoder blocks, we finally have our
familiar softmax layer to predict the
next English word.

Tanmoy Chakraborty

Qutput

Tra N SfO rmer ProbaTDilities

Reduces covariance shift and
makes the system stable

. | Softmax)
Architecture T
|l Linear)
& ™
| Add & Norm ==
Feed
Forward
—
s I N | Add & Norm =<
—{_Add & Norm J ~it-Head
: 1 -re Feed Attention
Adding non-linearities Eorward 5 Nix
j (J~
Add & Norm
Nx I
; : ~—>| Add & Norm] Maskod
Allows querying multiple Multi-Head Muiti-Head
positions at each layer AL Attention
At LU
— J/ . p—
. . . Positional Positional
Adds positional information ——Encoding ®—(J{> (?—@ Encoding
Input Output
Embedding Embedding
Inputs Qutputs
Source of Image : Attention is all you need (Vaswani etal., 2017) (shifted right)

Introduction to LLMs

Prevents attention lookups into
the future while decoding

Tanmoy Chakraborty

Layer normalization

* Mainidea: Batch normalization is quite beneficial, but it's challenging to apply with
sequence models. The varying lengths of sequences make it difficult to normalize across

a batch. Sequences can be very long, which often results in smaller batch sizes.

* Solution: Layer normalization

d-dimensional vectors
5 +— for each sample in batch different dimensions of a

Jdi ar,ag,...,a
N1 1 1 ./ | &
M:EZ% o= EZ(G@_U)Q M:gzaj 0= 32(%“#)2
P i—=1 /' i=1 i=1
1-dim
a— [

I
v Layer Norm

s —
a; =~ —Fy 48 a
o Batch Norm

Tanmoy Chakraborty

Introduction to LLMs

	Default Section
	Slide 1
	Slide 2: Is Attention All We Need?
	Slide 3: Recap: Attention
	Slide 4: Recap: Attention
	Slide 5: Recap: Attention
	Slide 6: Self-Attention
	Slide 7: Self-Attention
	Slide 8: Self-Attention
	Slide 9: Self-Attention
	Slide 10: Self-Attention
	Slide 11: Self-Attention
	Slide 12: Self-Attention
	Slide 13: Self-Attention
	Slide 14: Self-Attention
	Slide 15: Self-Attention
	Slide 16: Self-Attention
	Slide 17: Self-Attention
	Slide 18: Self-Attention
	Slide 19: Self-Attention
	Slide 20: Self-Attention
	Slide 21: Self-Attention
	Slide 22: Self-Attention
	Slide 23: Self-Attention
	Slide 24: Self-Attention
	Slide 25: Self-Attention
	Slide 26: Self-Attention
	Slide 27: Self-Attention
	Slide 28: From Self-Attention to Transformers
	Slide 29: From Self-Attention to Transformers
	Slide 30: Positional Encoding - Motivation
	Slide 31: Sinusoidal Positional Encoding
	Slide 32: From Self-Attention to Transformers
	Slide 33: Multi-Head Attention
	Slide 34: Multi-Head Attention
	Slide 35: Multi-Head Attention
	Slide 36: Multi-Head Attention
	Slide 37: Multi-Head Attention
	Slide 38: Multi-Head Attention
	Slide 39: Multi-Head Attention
	Slide 40: Self-Attention (In Encoder)
	Slide 41: Self-Attention (In Encoder)
	Slide 42: Self-Attention (In Encoder)
	Slide 43: Self-Attention (In Encoder)
	Slide 44: Self-Attention (In Encoder)
	Slide 45: Self-Attention (In Encoder)
	Slide 46: Self-Attention (In Encoder)
	Slide 47: Self-Attention (In Encoder)
	Slide 48: Multi-Head Self-Attention
	Slide 49: Multi-Head Self-Attention
	Slide 50: From Self-Attention to Transformers
	Slide 51: Self-Attention Is “Linear”
	Slide 52: Position-wise Feed-Forward Networks
	Slide 53
	Slide 54: From Self-Attention to Transformers
	Slide 55: Self-attention can see the future!
	Slide 56: Self-attention can see the future!
	Slide 57: Masked Attention
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Transformer Architecture
	Slide 69: Layer normalization

